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Reflection at a Curved Dielectric lnterface— Electromagnetic

Tunneling
ALLAN W. SNYDER AND JOHN D. LOVE

(Invited Paper)

Afrsfracf-The reflection of a locally plane wave from a curved
interface between two nonabsorblng dielectric media is investi-
gated. Our analysis is applicable to an interface of general shape,

defined at each point by the two principal radii of curvature. When
the wave is incident from the denser medium at angles greater
than the critical angle it is only partially reflected, due to a form of
electromagnetic tunneling. Generalized Fresnel transmission co-
efficients and m extension of Snell% law are derived to account for
this transmission into the less dense medium. Ray tracing can then
be applied to determine such phenomena as the bending losses in
optical slab waveguides, and the curvature loss of skew rays within

straight optical waveguides of circular cross section.

I. INTRODUCTION

wE INVESTIGATE the effect of a curved dielectric

interface on the reflection and refraction of plane

waves for arbitrary values of the refractive indices on

either side of the interface. Our analysis is applicable to

interfaces of general shape. When the interface is concave

toward the denser medium, w-e find that total internal

reflection is prevented by electromagnetic tunneling. Very

simple generalized Fresrwl’s law and Snell’s law arc

derived to include the effects O* tunneling.

The special case of incidence close to the critical angle,

when the indices of refraction are nearly equal has been

report ed previously [1].

We begin in Section II with a brief review of the laws

of reflection and refraction for a plane interface,

present the results for a curved interfaee in Section

The mathematical derivation is given in Section VI.

II. PLANE INTERFACE

(NONABSORBING MEDIA)

and

III.

Consider a plane wave incident, in the optically denser

medium, at a plane interface between two nonabsorbing

dielectric media of refractive indices w and m < w as
shoym in Fig. 1. The angles of incidence and transmission

relative to the normal are a, and a ~, respectively. When

the w-avc is incident at an angle that is greater than or

equal to th(? critical angle a,, it is totally reflected. For

y 20, the electromagnetic field is evanescent and decays

exponentially away from the interface [2].

For a, < a,, the wave is only partially reflected, since

some of the incident light energy is transmitted normally
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Fig. 1. Plane wave reflection from a plane interface between two
nonabsorbing media of indices of refraction nl and n~. The wave
vectors in media 1 and 2 are kl and kj, respectively. The plane of
incidence is defined by kl and the normal (y axis). kj lies in the
plane of incidence. The figure illustrates a wave undergoing re-
fraction. a. is the critical angle.

to the interface into the less dense medium. The trans-

mitted or refracted wave originates at the interface y = O

at angle a ~given by Snell’s law

?11sin a, = ?Iasin a ~. (1)

The critical angle is that value of a, for which a, = r/2.

Thus

sin a. = n2/nl. (2)

We define a power transmission coefficient T as

r Power of the reflected wave
T=l–

Power of the incident wave “
(3)

For the plane interface, T is given by Fresnel’s classical

expressions T = TF. When ai ~ a., TF = O, and when

O ~ ai ~ a., the transmission coefilcient depends on the

polarization of the incident wave. If the electric vector

is parallel to the interface (E:, = O) then TF = TFE,

where [2]

4{ 1 – (Cos cY./cos ai) 2} 112

‘FE = [1 + {1 – (Cos ac/cos ai)’}11’]’ “
(4a)

When the magnetic vector is parallel to the interface
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(Hv = O) then T. = TFE, w~ere [2]

4{1– (cos a,/cos CW)2) llz/sin2 a,

‘FH = [1 + {1 – (COSa,/cos a,)’) ‘/2/sin2 aC>
(4b)

In the case of nearly equal refractive indices, nl ZY %,

sin a, 2% 1~ and TFH s TF~. On the other hand, when

CYi~ CZ~and the refractive indexes are arbitrary

TFE ~ TFH sin’ a, ~ 4{1 – (COSaC/cos a~)’)’/’ (4c)

provided a, is not too small in the case of T~H.

III. CURVED INTERFACE

(SUMMARY OF RESULTS) .

We now introduce the modifications to the plane il~ter-

face results due to curvature. In Fig, 2, p is the radius of

curvature in the plane of incidence, formed by the normal

to the interface (i.e., the y axis) and the wave vector kl

in medium 1. We emphasize that p depends on the direc-

tion of kl and the principal radii of curvature that define

the interface (see Section IV).

The results of this section assume that 1) the incident

radius of curvature is large compared to the wavelength

of light in medium 1, and 2) when czi > a~, sm ai = sm a~,

and p is of the order of the smaller of the two principal

radii of curvature. Both of these restrictions are discussed

in detail in Section VI, where the derivation of the follow-

ing results is presented.

A. Origin of the l’ransmitted Wave

In general, when a plane wave is incident, upon a curved

interface, it is only partially reflected. The transmitted
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Fig. 2. Reflection from a curved interface between two nonabsorb-
ing media. When a; > a,, the transmitted wave origin~tes tangent
to the caustic at Y = y~~ = p{ (~in a;/SIII 4 – 1). P H the radius

of curvature in the plane formed by the normal to the interface
and the incident wave direction k 1. In general p depends on two
principal radii of curvature and the direction of kl as discussed
in Section IV.

wave in medium 2 appears to originate at a distance y ~P

from the interface as shown in Fig. 2, where V,P is given by

—— ——————

u

—————

p{ (sin ai/sin a,) – 1},

1

cz~> a, (5a)

(), aj < 0!,. ! (.5b)
.—

As the angle of incidence a; is increased above the critical

angle a., y,,, increases. The position y = ytP specifies the

location of the turning point (caustic) between the ex-

ponential decay and outgoing wave behavior of the fields.

The electromagnetic field is evanescent for O < ~ ~ y,P.

Thus we can view the apparent origin of the transmitted wave

at y,D >0 as a form o,f electromaq}~etic tunneling [1], [3].
The wave tumnels from the interface at y = O through the

evanescent region to emerge at y = y ,P. Tulineling arises

[2] because the phase velocity of the wave in medium 2,

parallel to the curved interface, is less than the velocity

of a plane w’ave in medium 2 for g < v ~J.At the position

v = YC,, these two velocit~es become equal and the field
disassociates itself from the interface by tadiating into

space. This radiation is analogous to that emitted by a

relativistic charged particle moving at constant speed on

a curved path, i.e., synchroton radiation. Radiation dtie

to refraction is analogous to Cherenkov radiation.

We call the waves with y,, = O, i.e., those with a, ~ a,,

refracting waves. We call waves with y.~P> 0, i.e., those

with a ~ > a,,, tunneling waves.

B. Angle at oj the Transmitted Wave at y = y~,

After tunneling, the wave emerges tangent to the camtic

approximate ely in the plhne of the incident wave (see

Section VII) as shown in l?ig. 2, so that a, = ~/2 indepen-

dent of yfj. This is the eitension of Snell’s law for angles

of incidence greater than the critical angle. For a, ~ a.

the transmission angle is given by (1).

C. P~wer Transmission Coefficient

The fraction T of incident light power that is trans-

mitted, normal to the interface, into medium 2 is defined

by (3). Wh(?n the interface is curved as in Fig. 2, T is

.glven as

~:~~”1 +fi” 1~-1 (6)
..

where T~, is Fresnel’s classical transmission coefficient

for a plane interface between nonabsorbing media as given

by (4). However, unlike (4), T~ in (6) is defined for values

of a~ both greater and less than a.. The curvature factor

C is

~ = I Ai (A exp [2ri/3]) l-z

4T I A Iljz
(7)

where

A = (klp/2 sin~ a,)2/3 (COS2a, — COS2ai) (8)

kl = 27rlL1/A (9)
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Fig. 3. The power transmission coefficient Z’Eas defined by (3) for
the electric vectorll parallel to the interface in Fig. 2. The nu-
merical results are found from (6) for a, = 10°, 45~, and 80°. As
klp+ CO, Z’Napproaches theclassical Fresnel coefficient ~FE.

and L is the wavelen~th in vacu’um. The modulus of the

Airy function I Ai (A exp [2ni/3]) 1–2is a smooth decreas-

ing function of A. In the Appendi~ we give useful asymp-

totic forms for I Ai (A exp [2n-i/3]) 1. Further details and

tables of Airy functions are found in [4].

For angles of incidence close to the critical angle, a good

approximation to T is to set a, ~ cw in (6). Then, from

(4c), (6), (7), and (8)

,..,

--y--l:io.,..
n;

-<--.---,

,.., I \& 7---; \ J
o ,..3 2X1O-’ 3 Xlo-’ 4.10-’

(3:-0

Fig. 4. The power transmission coefficient when nl = n?, i.e..
e, = r/2 and TB ~ TH. e. = (7r/2) .– a. and 1% = (7r/2) - a,.
Solid curves represent values of .9,T due to curvature, find dashed
curves represent &T due to material absorption. Where the two
sets of curves intersect, the points represent equal transmission
losses due to curvature and absorption due to reflection for the
parametric vallles of klp and n2i/n~’, respectively.

o I Ai (A exp [2mi/3]) 1-2 (10)

where the superscripts E and H represent the Eu = O and

H. = O cases, respectively, and A is given by (8).

These results are formally restricted to the two condi-

tions above. In more precise mathematical terms these

are 1) Lhp >> sin–4 a. COS–3 cw and 2) UtP << P,, where p. is

the smaller of the two principal radii of curvature; how-

ever, they are often more restrictive than necessary (see

Section VII).
The expressions for T given by (6) and (10) are

uniformly valid on either side of the critical angle. They

simplify for the several cases of practical interest to be

discussed next.

1 ) Angle of Incidence a; Less Than the C?itical .4 ngle a.:

When a~ < a., Fresnel’s classical expression for T is given

by (4). However, we see from the asymptotic form of

I Ai l-’ given by (A7) in the Appendix that C z 1, i.e.,

(6) reduces to (4), only when – A >>1. In other words,

when the int erf ace is curved, Fresnel’s laws for a, S a.

fail for angles of incidence too close to the critical angle.

2) Incidence at the Critical Angle: When a, = a,,
Fresnel’s law gives T = O. However, from (6) or (10)

and (.410) of the Appendix, we find that

~E-
——-.—

-~ (11)TE = TH sin2 a Y 3182 (sinz aJklP) l/3/cos a .

The reader is cautioned from the erroneous conclusion

that T is unbounded as cr. ~ O or 7r/2. Due to restriction

1) discussed above, T <<1 when a~ = a..

3) Incidence Greate~ Than the Critical Angle. When u, >

a. and not too close to a., in particular, when A >> 1 but

not so large as to violate our second restriction, we find

from (A4) in the Amendix that., L.
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which is an excellent approximation for determining

curvature losses in nearly all cases of practical interest.

Optical devices often have similar refractive indices,

i.e., nl g ~li. In this case we define e, = ~/2 — a, and

Oc= r/2 – a, whence 0,,0,<<1. Thus T from (4a), (6),

and (12) simplifies to

.exp [—$k1P(6C2 — 19i2)312]. (13)

Note that we have talcen the modulus of T~E ~vhich for

a i > a. has an imaginary numerator and a complex

denominator.

The restriction sin a, ~ sin a, implies ai s a. provided

nl and nz are sufficiently cliff erent. In this case, using

(4c), (6), and (12), Tbecomes:

“=4(%5-1)’2
{

2 lklp
. exp — ~ m, (COS2a, – Cos’ %) 3/2

1
( 14)

This is valid unless nl ~ ?L2.Then ( 13) is a better approxi-

mation.

D. Numerical Results for T

In Fig. 3 numerical results are presented for T when

a. = 10°, 4.5°, and 80°, respectively. When rr~~ n~, 0. T

(where T is given by (6)) depends only on 0i2 – O? and

klp, where 0 = (r/2) – a. Thus we can plot curves on

one graph that are valid for all 0, <<1. This is done in

Fig. 4 with the solid curves,

E. Interface withConvex Curvature

Our results apply only to the concave curvature illus-

trated in Fig. 2. There is no tunneling when the curvature

is convex, thus Fresnel’s coefficients given by (4) provide

a suitable approximation when lilp >>1.

F. Case of nt > nl

When the index of refraction of medium 2 is greater

than medium 1, there is no tunneling and Fresnel’s coef-

ficients (4) are again a suitable approximation.

IV. DISCUSSION OF RESULTS

We have described reflection from a curved dielectric

interface. Our results apply to a generalized interface

defined by the principal radii of curvature p. and p, as

in Fig. 5. For this case p, the radius of curvature in the

plane of incidence, is given by

Lc&E&J ’15)

MEDIUM
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Fig. .5. A curved il~terface between two dielectric media defiued by
the principal radii of curvature P., m. The interface is concave
towards nl.

where OZand 9, are the inclinations of the wave vector &l

to the z and z axes, respectively.

The results are valid for local plane wave reflection at

an interface between two serr~i-injinite dielectric media,

In general, other effects must be considered when attempt-

ing to use a ray description of wave propagation, e.g., the

lateral shift caused by either A finite beam size [5] or the

confinement of light within an optical waveguide [1], [6].

The remarkable feature of the power transmission coef-

ficient T as given by (6) is that it depends only on the

radius of curvature p in the plane of incidt?nce and the

inclination a, to the normal. This simplicity is a conse-

quence of the restriction y iP << PZ,PU requiring sin a j =

sin a, as shown in Sections VI and VII. If it were true for

all angles a,, T would be zero only when p = ~ . However”,

T = O for all. skew rays within a cylinder that are inclined

to the cylinder axis at angles less than (~/2’) – a. [1],

[7], [S]. For example, if we let p. = ~ in Fig. 2, then

from (15 ), p = pz sin2 a,/cos2 oz. .411 rays with” 19~<

(T/2 – a.) have T = O but p # @ unless O, = m/2.

iSevertheless, comparing the exact T for cylinders with

our approximate T shows that (6) is an excellent ap-

proximation for all rays with ~, ~ a. [9]. Ill nearly all

cases of p~aa!ical interest, (6) and its simple interywetat ion

allow fo~ a satisjactrwy description of re$ection ,f2’om a curved

interface.

Although the curvature 10SSis small for one reflection,

it is significant for multiple reflections. For example, a

substantial amount of light leaks from the straight, multi-

mode circular optical waveguide due to its curved cross
section [9]. These losses are easily accounted for by ray

tracing, using our generalized Fresnel transmission coef-

ficient [9]. Curvature losses explain the difference between

leaky modes on circular and slab waveguidm [7], [10],

[11] and also help to explain why there is no trapped
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energy within a finite dielectric structure of higher index

of refraction than its surround [12]. Numerous applica-

tions of the generalized Fresnel’s laws are discussed in

[1] for the special case of n, ~ n,.

v. EFFECT oF MATERIAL ABi30RPTION

ON REFLECTION AT A PLANE INTERFACE

Total reflection at- a plane interface is possible ody if

both media are nonabsorbinjg. Since the partial reflection

due to curvature is a small effect for one rejection, it is

necessary to examine when it is masked by the partial

reflection caused by material absorption.

When both media are absorbing, the Fresnel power

coefficients defined by (3) for a plane interface are

TE = 4 (COS aJcosZ a.) Re { (n.JnJ 2 – sinz ai) 112 (16a)

(

4 cos a%sin4 a,TM . _.
COS2a, )

Re { (nl/nz) ‘[(n,/nl) 2 – sin%,]’1’)

{sin2 a, – sin2 aCCOS2a,}
(16b)

pi-ovided that I COS2a, – COS2a, />> / (?z2~/’n2’) — (nl~/?Ll’) I ,

where Re is the real part and nl = nl’ — inl~, 7?Z=
n2~ — in2~ (assuming a time dependence exp ( —iti~) ) ~

For nl’ ~ n2’, a, ~ 7r/2 and (16) simplifies

T~ ~ TH % 4($,/6,2) Re [6$2 – OC1

+ %{ (?L,’/n,’) – n,’/n,”) } ]’/2 ( 17)

where 9, == (r/2) — ai and 0. = (m/2) — a,. We are in-.,.
terested in the case of small absorption. Thus,

0; < 8C,

——-—.—....—.——. . . . .

TE=p’~4
()

~ { (n2i/Tt2’) – ,(nli/nr) }
— 0C2 (0,2 – 0,2) 1/’

when

(18)

provided 0,2 – @i2>> I (w’/n”) – (nli/n17) ] <<1. In the

case when r~’/ng’ < nl’/nl’, T is indeed negative, cor-

responding to an inflow of energy into medium 1 from the

evanescent field in medium 2.

INumerical values of (17) are plotted as dashed curves

in Fig. 4 for the case 0, s 0, and nl% = O. Equation (18)

is highly accurate throughout the entire region depicted.
Absorption loss is often expressed in dB/km instead of

nz’, where n2; = ( X/4m104 lnlo e) dB/km and h is the wave-
length in vacuum.

As a practical example, we consider parameters typical

of the materials used for an optical fiber [13]; nl’ ~ 1,5.51,

n2’ s 1.4648, and k = 0.633 pm, With these values we

find that nz’/nzr ~ 0.7918 X 10–11 dB/km. Thus from

Fig. 4 the dashed curves for n2t/nt~ = 1o–T, 10-8, IO–9, and

10-” correspond to attenuations of 12628, 1263, 126, 12.6

dB/lim, respectively. The greatest absorption is represen-

tative of a glass far too Iossy as a cladding for communica-

tion optical waveguides. Nevertheless, Fig. 4 shows clearly

that, for any given /clP, reflection losses due to curvature

far exceed those due to absorption for incidence near to

the critical angle.

The reader is reminded that we have been discussing

the effects of the absorbing media on reflection and not

absorption due to the path length of the ray.

VI. MATHEMATICAL DERIVATION

Here we present an analysis of reflection from the inter-

face between two dielectric media shown in Fig. 5. This

is accomplished by considering the curved boundary as a

perturbation of a plane interface so that the analysis is a

modification of that used to derive Fresnel’s classical laws.

We assume lclp >>1, so that the fields exhibit local plane

wave characteristics. Accordingly the field in the denser

medium 1 can be approximated by an incoming and an

outgoing plane wave. The wave number kl is defined by

(9) and the radius of curvature in the plane of incidence p

by (15). As we show below, the efiect of curvature is

accounted for only in the jields of medium 2?and not by the

boundary conditions.

For a plane interface, the magnitudes kl and k, of the

wave vectors kl and k2 in medium 1 and 2 are related as

W = kz2 + kvlz + k=l = (2inl/1)2 (19a)

k21 = kz2 + kU22+ kz2 = ( 27m2/A)2 (19b)

where

k. = kl cos e. kvl = lc1 cOS a, k. = lc, cos $, (20a)

kU2 = (k# – ki~ + k,ll) 112= kl(sinl CXC– sinz ai) 1J2

(20b)

COS2e. + COS2a~ + COS2$Z = 1. (~oc)

Angles e. and es are the inclinations to the x and z axes,

respectively, and a, is the inclination to. the y axis or

normal. The cartesian components ~ ( z,y,z) of the vector

fields satisfy the scalar wave equation for a homogeneous

media. Thus, in medium 2, a solution is

i = e(~) exp (ik,.r + ikaz) (Zla,)

where

(d’/cZ~2) + lf,,22) e(y) = O, (~lb)

So far we have only been considering the plane interface.
An exact solution of the fields for the curved interface

must have variations of the forms exp (ilzo~) and

exp (it .@Z), where angles @=and @zare azimuthal angles

in the .z — .yand y — z planes, referred to origins 0. and 0,

at the centers of curvature (Fig. 5). To account for

curvature, we assume that k. and k, are functions of y

to satisfy

exp [ikz(y) z] % exp [il.@z] exp [ikg(g)z] ~ exp [il.@Z]

(22)

in the neighborhood of the interface. Since x Z (p. + Y) qL

and z s (p, + y)& we have

~.(Y) = W(PZ + Y) IJz(y) = lz/(pz + u). (23)
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The azimuthal parameters 1.,1. are defined by observing

that L(O) ~k and L(O) GIL on the interface. This

leads to

1. s pzkz 1. s p.lc.. (24)

If we restrict the analysis to Y<< P., P., then

k’(y) +k=’(v) = (L!’+k.’)(l –2Y/P) (25)

where p is given by (15).

The electromagnetic fields in medium 2 are found by

reP1acing k~zzin (Zlb) by

(26a)k#(y) = k,’ – k)(y) – k.’(y)

= k+ (sin’ a, – sinz ai + 2y sin2 aJp). (26b)
.,

After a change of variables this leads to Airy’s equation

(d2/di2 – g)e(t) = O (27)

where &is dimensionless

z(v) = –.{2(L2 + h’)/PI-2’3{k/22 + 2(L’ + h2)Y/Pf

(28a)

= {2 sin’ ai/klp}-213 {sin2 a; – sin’ a. – 2y sin2 cdp].

(ash)

The Airy function solutions of (27) can be thought of

best as connecting expressions between oscillatory and

evanescent (exponential) behavior. They give the field

dependence in the neighborhood of the caustic or turning

point of a large class of solutions to the scalar wave
equation, e.g., the Bessel functions in the region where

order equals argument.

The fields must be outward going waves as y + w and

also satisfy the boundary conditions at the dielectric

interface. The appropriate linear combination of Airy

functions required to represent outward going waves is

Ai (~ exp [2mi/3]). This function is discussed in the

Appendix.

The amplitude coefficients of the fields are found by

satisfying the boundary conditions at the dielectric inter-

face. In general, TE (E, = O) and TM (Hu = O) type

waves couple at a nonplanar interface. However, our

perturbation method involves boundary conditions that

are the same as those for a plane interface. We have in-

cluded the effect of curvature in the scalar wave func-

tions e(f) found from (27). Further, subject to our ap-

proximations, lclp >>1 and y<< P.,PS, the e (.9 ~epend~ng on

one radius of curvature p only. Thus reflection from an

arbitrary surface defined by two principal radii of curva-

ture is equivalent to reflection from a cylindrical surface

of radius p, when the incident wave is in the cylinder

cross section, i, e,, has no axial component. For this case

TM and TE modes do not couple and we can solve for the

amplitude coefficients with either Eu = O or Hu = O.

We begin with Ev = O, so that E is parallel to the

interface. Then, in medium 1 (omitting the time depen-

dence exp [–id]),

Ez(’) = (a exp [ik,lg] + b exp [–~~.iv])

.exp [i(kz.x + kg.z)] (29a)

Ho(l) = * (a exp [ilCVIy] – 13exp [– %Jyj)

. exp [i(kJ + k.z) ] (29b)

where a and b are the amplitudes of the .z components of

the incident and reflected electric fields. In medium 2 for

O 5 y << p.,p, we have

E.(’) = c Ai (~ exp [2zi/3]) exp [i(lc.J + k,z) ] (30a)

—in2c d
HZ(2) = — — Ai (g exp [27ri/3]) exp [i(kr + k.z) ],

k2– Cly

(30b)

where c is a constant. Continuity of l?, and Hz at y = O

leads to

b *–1—
a=~+l

(31)

where

1 = –i Ai (A exp [2~i/3])/7 Ai’ (A exp [3ri/3]) (32)

7 = { 2(kc2 .+ k=z) /p} l/3/kul (33a)

= (2 sin’ aJkIp)1i3/COS ai (33b)

A=$(Y= O). (34)

Prime denotes differentiation with respect to A. The

power transmission coefficient defined by (3) is

frJJ=l-lb/alz (35a)

=4 Re#/(l#12+2Re# +1) (35b)

where Re ~ is the real part of ~ given as

R,e # = (~ + ~*)/2 = ~Ai (A exp [2Ti/3]) l-2/4rT.

(36)

The asterisk denotes the complex conjugate and we have

used the W ronskian (Al 1). The modulus of IJ is simply

I i I = (1/Y) I Ai (A exp 2m+/3)/Ai’ (A exp [2zi/3]) 1.

Generalized Fresnel)s Laws and Power Trans?nission

Coefficients

We can find an excellent approximation to TE by examin-

ing its limiting forms. When A >>1, (35b), (36), (A3 ), and

(A4) lead to

When

where

ficient

TE C= I TFE I eX~ ( –4A’/2/3) .— (37a)

–A>> 1, (35b), (36), (A6), and (A7) lead to

z’EGz’FE=lTF~l (37b)

TFE is Fresnel’s classical prover transmission coef-

given by (4a) or equivalently as

T~E = 4kglkuz/ (Icul -t k,t) 2. (38)
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Wethcmnote that the limiting forms (37) are equivalent

to the limiting forms of

P=IFF”IC (39)

where C is defined by (7) and A by (8) or (34) and (2 S).

This suggests that TE given by (39) maybe valid for all A.

The greatest departure of (39) from (35b) is at A = O,

i.e., at CYi= aC. Then, from (4c), (39), and (A1O), our

approximation (39) is

TAP& = 3.182 (sin2 a./klP) 1’3/Cos ~C. (40)

The more exact expression given by (35b) is

T“ = TAPRxE/ { 1 + (TAPRx’/2) + ( TAPRXE/2m) 2}.

(41)

Thus (39) is valid for all A when at cu = a., TAPRXE <<1.

Since, by an earlier assumption, lcIp >>1, TAF.RXE is small

unless aC~ 7r/2. Therefore, from (40), we conclude that

klp >> COS-3a. is necessary for (39) to be valid.

In the next section we show that the restriction hp >>

COS–3 Cti is necessary to consider plane wave incidence so

that TE given by (39) is no less accurate than TE given

by (35).

When H, = O, the above procedure leads to TH =

I TpH I C, provided hp >> sin-’ ac COS-’ a., where T~H is

given by (4b) or equivalently by

“TPH = 4n&&kU,kU,/ {n,’kv, + nl’kvz) 2. (42)

The constraint on lclp again arises from requiring the

equality of TH and TAPRXH at ai = w. TH corresponding

to (36) is no less accurate for plane wave incidence than

TH = I T~H I C corresponding to (39), unless the condition

klp >> sin–4 a, is not satisjied. This condition is only a

restriction on very small angles a..

VII. ASSUMPTIONS IN THE ANALYSIS

A. klp >> sin-A a. COS–3 ai

We initial] y assumed that lc,p >>1 to ensure that the
fields are locally plane, but how large must klp be relative

to CW?This can be determined when it is recalled that we
reduced the problem to a wave incident, with no axial

component, at a cylindrical boundary. The exact solution

for this problem has fields of the form Jl (klp) exp (it@) at

the interface in the denser region, where JZ is a Bessel

function of the first kind of order 1 and d is the azimuthal

angle. Only when the Debye condition

klp >>1 and lclp – 1>> W (43)

holds can JZ (lclp) exp (il~) be decomposed into an in-

coming and an outgoing local plane wave at each point

(P,+) on the interface [7]. Combining these restrictions
with the relation [7], 1 = klp sin ai, we deduce

1 – sin ai >> {sin ai/(k1p)2] 113 (44)

which is always satisfied when klp >>1 unless ai is close

to T/2, for which case we find (44) compatible with
klp >> ( cos ai) ‘s. This is consistent with the approxima-

tion used to obtain (39) from (35). Thus (39) is the

appropriate generalized Fresnel’s power transmission coef-

ficient for TE.

Since the expression for TH required klp >> sin–4 a,”

COS–3a., the Debye condition alone is not sufficient for its

validity and our simple expression TH = I TPH I C is

inaccurate for angles a. too small to satisfy klp >> sin–4 a..

Fortunately, this is a case of little practical interest.

B. ytn << pz,pz

W assumed that y<< p~,p, in the derivation of Airy’s

differential equation (27) so that the scalar wave functions

depended on p only. From studying the fields in medium 2

we see that there is a caustic or turning point at a position

y = ytP 20 determined from &(y,P) = Oin (28a), i.e.,

ytp= —pkv22/2 (kz2 + kz2) = (p/2) { 1 — sin’ ac/sin2 a,}

(45)

for cu > a,, and y,, = O for ai < CU.The fields are evanes-
cent for o < y < ytv and oscillatory for g > Y~P.In order

to satisfy the outgoing wave condition our wave functions

must be valid for y > ytP, although not necessarily for

y>> y,P. However, we are restricted to y << p~,p,. Assuming

that p. < p,, we must therefore have Ytp << p.. (This is

satisfied automatically when ~i < CY.since V~P= O). Hence

we require from (45), (P/2p.) { 1 — sinz c2,/sin2 ai} <<1

which is satisfied when sin acs sin ai unless (p/Pm) is

enormous. Thus when sin ai ~ sin a, in (45), y~P is

given by (5).

The reader familiar with asymptotic methods for the

solution of differential equations may question the need

for the assumption y << p~,pz, or equivalently sin ai S
sin aC. Instead, the Wentzel-Kramer-Brillouin (WKB)

method of solution could have been used directly, although

the resulting integral in the exponential function can in

general only be evaluated when sin a, ~ sin a.. One case

where it can be evaluated exactly is for the cylindrical

interface. However, we find that such solutions are valid

only when sin ai z sin a.. In other words, the restriction

sin a~s sin a., necessary when ffi > a., is due to a funda-

mental limitation of the perturbation method presented

here.

In the analysis we treated TE and TM waves separately.

In general, TM and TE waves couple. The situation is

then analogous to reflection from an anisotropic slab with

effective refractive indices n.,n, along the principal axes.

The effect of the anisotropic behavior can be seen in our

present example by determining the direction k, of the

transmitted wave at y = y,P. From (26a), kV’ (y,fl) = O so

that the wave is tangent to the caustic. However, unless

yt,<< p~,pz, we observe that the direction of k,, given by
(23), is not in the incident plane, i.e., the wave direction

has been twisted in the tunneling process [14]. Thus,
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when UL, << p~,p,, we arc justified in separating the TM

and TE waves.

In conclusion, the concept of a generalized Fremel’s law,

that depends only on the radius of curvature in the plane

of incidence, fails unless sin a, ~ sin a,, when a~ > ac.

APPENDIX

AIRY IWJiNCTIONS [4]

The linearly independent solutions of (27) are Ai ( ~)

and 13i( ~), and the appropriate linear combinations for

our anal ysis are

Ai (~ exp [*2~i/3])

= (exp [*i~/3]/2) {Ai (~) % illi(() } (Al)

where Ai (& exp [— 27ri/3]) is the complex conjugate of

Ai (f exp [27rz/3]).

1) ~>> 1 (applicable \vhen a, > ac)

Ai (g exp [2ri/3]) ~ exp [– ire/6] exp [(2/3) &8j2]/27r112&lf4

(A~)

I Ai’ (~ exp [2~i/3])/Ai (.$ exp [2mi/3]) I = V2 (A3)

I Ai (~ exp [2Ti/3]) l-’s 47r~’/2 exp [– (4/3) &’I’]. (A4)

~) –&>> 1 (applicable when m < a.)

Ai ( –~ exp [27ri/3])

~ exp [i7i-/l2] exp [2’ ( 2/3 ) ~312]/2~]ly&14 (A5)

I Ai’ (–& exp [2mi/3]) /Ai ( – i exp [2mi/3]) ~= t’1’

I Ai ( – $ exp [%ri/3]) 1-2 ~ 47r.$’l’.

3) $ = O (applicable when a, = a.)

Ai (O*exp [2zi/3]) = 3-2/3/r (~) = 0.3.550

I .4i’ (0. exp [%ri/3])/Ai (0.exp [27ri/3]) \

A6)

A7)

A8)

-,
– 31m’(:)/r(+) = 0.7290 (A9)—

\ Ai (0.exp [2ri/3]) 1--’ = 3’131’(~)2 = 7.9337. (A1O)

4) Wronskian

Ai ($ exp ~!,ri/3]) Ai’ ({ exp [– 2mi/3])

— Ai’ (~ cxp [27rit3]) Ai (t exp [–- 27rz/3]) = z/2r.

(All)

Prime denotes differentiation with respect to & in (.43),

(A6), (A9), and (All).
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