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Abstract—The reflection of a locally plane wave from a curved
interface between two nonabsorbing dielectric media is investi-
gated. Our analysis is applicable to an interface of general shape,
defined at each point by the two principal radii of curvature. When
the wave is incident from the denser medium at angles greater
than the critical angle it is only partially reflected, due to a form of
electromagnetic tunneling. Generalized Fresnel transmission co-
efficients and an extension of Snell’s law are derived to account for
this transmission into the less dense medium, Ray tracing can then
be applied to determine such phenomena as the bending losses in
optical slab waveguides, and the curvature loss of skew rays within
straight optical waveguides of circular cross section.

I. INTRODUCTION

E INVESTIGATE the effect of a curved dielectrie

interface on the reflection and refraction of plane
waves for arbitrary values of the refractive indices on
either side of the interface. Our analysis is applicable to
interfaces of general shape. When the interface is concave
toward the denser medium, we find that total internal
reflection is prevented by electromagnetic tunneling. Very
simple gencralized I'resnel’s law and Snell’s law are
derived to include the effects of tunneling.

The special case of incidence close to the critical angle,
when the indices of refraction are nearly equal has been
reported previously [17].

We begin in Section II with a brief review of the laws
of reflection and refraction for a plane interface, and
present the results for a curved interface in Section III.
The mathematical derivation is given in Section VI.

II. PLANE INTERFACE
(NONABSORBING MEDIA)

Consider a plane wave incident, in the optically denser
medium, at a plane interface between two nonabsorbing
dielectric media of refractive indices 73 and n, < ny as
shown in Fig. 1. The angles of incidence and transmission
relative to the normal are «. and «, respectively. When
the wave is incident at an angle that is greater than or
equal to the critical angle «., it is totally reflected. For
y > 0, the electromagnetic field is evanescent and decays
exponentially away from the interface [2].

For a, < a., the wave is only partially reflected, since
some of the incident light energy is transmitted normally
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Fig. 1. Plane wave reflection from a plane interface between two
nonabsorbing media of indices of refraction n, and n.. The wave
vectors in media 1 and 2 are ki and ks, respectively. The plane of
incidence is defined by k; and the normal (y axis). k» les in the
plane of incidence. The figure illustrates a wave undergoing re-
fraction. a. is the critical angle.

to the interface into the less dense medium. The trans-
mitted or refracted wave originates at the interface y = 0
at angle «; given by Snell’s law

7y 8N @, = Mg SIN 4.

(1)

The critical angle is that value of a, for which a, = 7/2.
Thus

(2)

sin a, = ny/ny.

We define a power transmission coefficient T as

Ty — Power of the reflected wave 3)
' Power of the incident wave -

For the plane interface, 7' is given by Fresnel’s classical
expressions T = Tp. When o; > «, Tr =0, and when
0 € a; < «,, the transmission coefficient depends on the
polarization of the incident wave. If the electric vector
is parallel to the interface (EF, = 0) then T% = T7%,

where [2]

T E — 4{1 — (cos a,/cos a;)?}?
i [14 {1 — (cos a./cos a;)?} 2] :

When the magnetic vector is parallel to the interface

(4a)
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(H, = 0) then Ty = T¥¥, where [2]
T = 441 — (cos a,/cos oei)z}”z/sir%2 %
[1+4 {1~ (cos a,/cos a;)2}12/sin? a,
In the case of nearly equal refractive indices, n; =2 ne,

sina, 221, and Tp¥ 22 T»%. On the other hand, when
a; = o, and the refractive indexes are arbitrary

(4b)

Tr¥ = TpH sin® a, =2 4{1 — (cos a./cos a;)?}V?  (4c)

provided «, is not too small in the case-of T¥H.

III. CURVED INTERFACE
(SUMMARY OF RESULTS)

We now introduce the modifications to the plane inter-
face results due to curvature. In Iig. 2, p is the radius of
curvature in the plane of incidence, formed by the normal
to the interface (i.e., the y axis) and the wave vector &
in medium 1. We emphasize that p depends on the direc-
tion of k; and the principal radii of curvature that define
the interface (see Section IV).

The results of this section assume that 1) the incident
radius of curvature is large compared to the wavelength
of light in medium 1, and 2) when a; > «,, sin a; =< sin «,
and p is of the order of the smaller of the two principal
radii of curvature. Both of these restrictions are discussed
in detail in Section VI, where the derivation of the follow-
ing results is presented.

A. Origin of the Transmalted Wave

In general, when a plane wave is incident upon a curved
interface, it is only partially reflected. The transmitted
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Fig. 2. Reflection from a curved interface between two nonabsorb-
ing media. When a; > «., the transmitted wave originates tangent
to the caustic at y = yu = p{(sin a;/sin a,) — 1}. p is the radius
of curvature in the plane formed by the normal to the interface
and the incident wave direction k. In general o depends on two
principal radii of curvature and the direction of ky as discussed
n Section IV.
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wave in medium 2 appears to originate at a distance y,,
from the interface as shown in Fig. 2, where y, 1s given by

pi (sin a;/sin @) — 1}, a; > o, (5a)

0, a; < a. (5b)

As the angle of incidence «; is increased above the critical
angle «., y:, increases. The position y = y,, specifies the
location of the turning point (caustic) between the ex-
ponential decay and outgoing wave behavior of the fields.
The electromagnetic field is evanescent for 0 < y < yy,.
Thus we can view the apparent origin of the transmitted wave
at yip > 0 as a form of electromagnetic tunneling [17, [3].
The wave tunnels from the interface at y = 0 through the
evanescent region to emerge at y = y,,. Tuineling ariscs
[2] because the phase velocity of the wave in medium 2,
parallel to the curved interface, is less than the velocity
of a plane wave in medium 2 for y < #,,. At the position
Y = Y, these two velocities become equal and the field
disassociates itself from the interface by radiating into
space. This radiation is analogous to that emitted by a
relativistic charged particle moving at constant speed on
a curved path, i.e., synchroton radiation. Radiation due
to refraction is analogous to Cherenkov radiation.

We call the waves with y,, = 0, i.e., those with a, < a,
refracting waves. We call waves with y,, > 0, i.c., those
with «; > «a,, tunneling waves.

B. Angle a, of the Transmitted Wave al y = y,,

After tunneling, the wave emerges langent to the caustic
approximately in the plane of the incident wave (see
Section VII) as shown in Fig. 2, so that o, = »/2 ihdepen-
dent of y.;,. This is the extension of Snell’s law for angles
of incidence greater than the critical angle. For «, < «,
the transmission angle is given by (1).

C. Power Transmission Coefficient

The fraction T of incident light power that is trans-
mitted, normal to the interface, into medium 2 is defined
by (3). When the interface is curved as in Fig. 2, T is
given as

| T=1Tr]C | (6)
where T» is Fresnel’s classical transmission coefficient
for a plane interface between nonabsorbing media as given
by (4). However, unlike (4), Tpin (6) is defined for values
of a; both greater and less than «,. The curvature factor
Cis

Al (Aexp [27i/3]) |2

¢ PRUNIE @

where
A = (kip/2 sin® @,)?? (cos? @, — cos? a;) (8)
ky = 2wny/) 9)
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Fig. 3. 'The power transmission coefficient T'Z as defined by (8) for
the electric vector E parallel to the interface in Flg 2. The nu-
merical results are found from (6) for a; = 10° 45° and 80°. As
kip — o, T® gpproaches the classical Fresnel coefficient TpE.

and \ is the wavelength in vacuum. The modulus of the
Airy function | Ai (A exp [2#¢/3]) |2 1s a smooth decreas-
ing function of A. In the Appendix we give useful asymp-
totic forms for | Ai (A exp [274/37]) |. Further details and
tables of Airy functions are found in [4].

For angles of incidence close to the critical angle, a good
approximation to T is to set a, = «, in (6). Then, from

'(4(3), (6>, (7)’ and (8>
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Fig 4. The power transmission coefficient when n1 =~ n., ie.

e~ w/2and TE =~ TH ¢, = (7/2) — ac and 6; = (7/2) — a.
Sohd curves represent values of 6.7 due to curvature, and dashed
curves represent 8,7 due to material absorptions. Where the two
sets of curves intersect, the points represent equal transmission
losses due to curvature and absorption due to reflection for the
parametric values of kip and ne?/ny, respectively.

1 (2 sin? aa)l/ 3
T COS a kip

where the superscripts £ arid H represent the E, = 0 and
H, = 0 cases, respectively, and A is given by (8).

These results are formally restricted to the two condi-
tions above. In more precise mathematical terms these
are 1) kip>>sin~*a, cos™ a; and 2) y;, < ps, where p, 1s
the smaller of the two principal radii of curvature; how-
ever, they are often more restrictive than necessary (see
Section VII).

The expressions for T given by (6) and (10) are
uniformly valid on either side of the critical angle. They
simplify for the several cases of practical irterest to be
discussed next.

1) Angle of Incidence a; Less Than the Critical Angle a.:
When a; < a., Fresnel’s classical expression for 7' is given
by (4). However, we see from the asymptotic form of
| Al |2 given by (A7) in the Appendix that C ~ 1, ie.,
(6) reduces to (4), only when —A>> 1. In other words,
when the interface is curved, Fresnel’s laws for «, < a.
fail for angles of incidence too close to the critical angle.

2) Incidence at the Critical Angle: When «, = «,
Fresnel’s law gives T = 0. However, from (6) or (10)
and (A10) of the Appendix, we find that

TE =~ TH gin? o, =

(10)

| 7% = 74 sin? o, = 3.182 (sin? a,/k1p) ¥*/cos a. ] (11)

The reader is cautioned from the erroneous conclusion
that 7' is unbounded as «, — 0 or 7/2. Due to restriction
1) discussed above, T << 1 when a; = a..

8) Incidence Greater Than the Critical Angle. When o, >
a. and not too close to ac, in particular, when A >> 1 but
not so large as to violate our second restriction, we find
from (A4) in the Appendix that
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| € ~ exp [—$4%] (12)

which is an excellent approximation for determining
curvature losses in nearly all cases of practical interest.

Optical devices often have similar refractive indices,
ie, nm = n.. In this case we define 6, = /2 — «, and
0, = 7/2 — «, whence 8,0, < 1. Thug T from (4a), (6),
and (12) simplifies to

TP = TH =~ 4(6,/0.){1 — 6.2/6.2}'*
-exp [—3kip (6.2 — 0.2)%%].

Note that we have taken the modulus of T#f which for
@; > o, has an imaginary numerator and a complex
denominator.

The restriction sin «, 22 sin o, implies a; &2 «, provided
f; and ny are sufficiently different. In this case, using
(4¢), (6), and (12), T becomes:

2 12
TE o~ 4 cos® o, 1
cos? a;

(13)

{ 2 kyp
.exp ——

3 5 (cos? a, — cos? al)m} (14)
sin? o,

=~ T¥ sin? @,

This is valid unless ny =2 ns. Then (13) is a better approxi-
mation.

D. Numerical Results for T

In Fig. 3 numerical results are presented for 7' when
. = 10°, 45°, and 80°, respectively. When ny =2 ne, 6,7
(where T is given by (6)) depends only on §;2 — 6,2 and
kip, where 8 = (7/2) — «. Thus we can plot curves on
one graph that are valid for all 6, << 1. This is done in
Fig. 4 with the solid curves.

E. Interface with Conver Curvature

Our results apply only to the concave curvature illus-
trated in Fig. 2. There is no tunneling when the curvature
is convex, thus Fresnel’s coefficients given by (4) provide
a suitable approximation when kip >3 1.

F. Case of ny > my

When the index of refraction of medium 2 is greater
than medium 1, there is no tunneling and Fresnel’s coef-
ficients (4) are again a suitable approximation.

IV. DISCUSSION OF RESULTS

We have described reflection from a curved dielectric
interface. Our results apply to a generalized interface
defined by the principal radii of curvature p, and p, as
in Fig. 5. For this case p, the radius of curvature in the
plane of incidence, is given by

pep2 SINZ a,

p =
pz COS2 0, 4 p, cos? GLJ

(15)
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Fig. 5. A curved interface hetween two dielectric media defined by
the principal radii of curvature p., p.. The interface is concave
towards ni.

where 8, and 6, are the inclinations of the wave vector k;
to the r dnd z axes, respectively.

The results are valid for local plane wave reflection at
an interface between two semi-infinite dielectric media.
In general, other effects must be considered when attempt-
ing to use a ray deseription of wave propagation, e.g., the
lateral shift caused by either a finite beam size [57 or the
confinement of light within an optical waveguide [17, [6].

The remarkable feature of the power transmission coef-
ficlent T as given by (6) is that it depends only on the
radius of curvature p in the plane of incidence and the
inclination o, to the normal. This simplicity is a conse-
quence of the restriction yi, << psypy requiring sin o 2
sin a. as shown in Sections VI and VIL. If it were true for
all angles &,, T would be zero only when p = «, However, -
T = 0 for all skew rays within a cylinder that are inclined
to the cylinder axis at angles less than (7/2) — a, [1],
[7], [8]. For example, if we let p, = « in Fig. 2, then
from (13), p = pssin?a,/cos?8,. All rays with 6, <
(/2 — ) have T =0 but p © unless 6, = 7/2.
Nevertheless, comparing the exact T for cylinders with
our approximate 7 shows that (6) is an excellent ap-
proximation for all rays with a, 2 a. [97]. In nearly all
cases of practical interest, (6) and its simple interpretation
allow for a satisfactory description of reflection from a curved
interface. .

Although the curvature loss is small for one reflection,
it is significant for multiple reflections. For example, a
substantial amount of light leaks from the straight, multi-
mode circular optical waveguide due to its curved cross
section [97. These losses are easily aceourted for by ray
tracing, using our generalized Fresnel transmission coef-
ficient [97). Curvature losses explain the difference between
leaky modes on circular and slab waveguides [7], [10],
[11] and also help to explain why there is no trapped
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energy within a finite dielectric strueture of higher index
of refraction than its surround [127]. Numerous applica-
tions of the generalized Fresnel’s laws are discussed in
[17] for the special case of ny =2 n,.

V. EFFECT OF MATERIAL ABSORPTION
ON REFLECTION AT A PLANE INTERFACE

Total reflection at. a plane interface is possible only if
both media are nonabsorbing. Since the partial reflection
due to curvature is a small effect for one reflection, it is
necessary to examine when it is masked by the partial
reflection caused by material absorption.

When both media are absorbing, the Fresnel power
coefficients defined by (3) for a plane interface are

TE = 4(cos a;/cos? a,) Re {(ny/ny)? — sin? o} (16a)
T - (4_:£gs_ a, sin? ozc>
cos?
Re { (n1/72)°[ (n2/11)2 — sina; |2} (16b)

{sin? o; — sin? @, cos? a;}

provided that | cos?a, — cos?a, [>> | (ne?/ny) — (mi/na) |,
where Re is the real part and m = ny — ing?, ne =
ny" — ing® (assuming a time dependence exp (—1wt)):

For ny" 22 ny’, o, 22 /2 and (16) simplifies

TE = TH =~ 4(9,/6,2) Re [0,2 — 6.2
+ 2if (ne*/nyy — m?/nyr) }JH2

where 8, = (#/2) — a; and 8, = (x/2) — a,. We are in-
terested in the case of small absorption. Thus, when
8, <4,

(17)

{(?/ny) — (ma'/ni7)}
(002 — 012) 1/2

e 1o (2)
0.2

(18)

provided 8.2 — 823> | (me*/ne") — (m*/ny) | < 1. In the
case when n,'/ny” < my*/ny’, T is indeed negative, cor-
responding to an inflow of energy into medium 1 from the
evanescent field in medium 2.

Numetical values of (17) are plotted as dashed curves
in Fig. 4 for the case 6,22 0, and ny* = 0. Equation (18)
is highly accurate throughout the entire region depicted.

Absorption loss is often expressed in dB/km instead of
n%, where 7y’ = (A\/4710%Iny ¢) dB/km and A is the wave-
length in vacuum.

As a practical example, we consider parameters typical
of the materials used for an optical fiber [137; ny” = 1.551,
7" 22 1.4648, and N = 0.633 pm. With these values we
find that ns’/ny" 220.7918 X 10~ dB/km. Thus from
Fig. 4 the dashed curves for ny*/ny" = 107, 10-%, 102, and
10~ correspond to attenuations of 12 628, 1263, 126, 12.6
dB/km, respectively. The greatest absorption is represen-
tative of a glass far too lossy as a cladding for communica-
tion optical waveguides. Nevertheless, Fig. 4 shows clearly

that, for any given kip, reflection losses due to curvature
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far exceed those due to absorption for incidence near to
the critical angle.

The reader is reminded that we have been discussing
the effects of the absorbing media on reflection and not
absorption due to the path length of the ray.

VI. MATHEMATICAL DERIVATION

Here we present an analysis of reflection from the inter-
face between two dielectric media shown in Fig. 5. This
is accomplished by considering the curved boundary as a
perturbation of a plane interface so that the analysis is a
modification of that used to derive Fresnel’s classical laws.
We assume kip 3> 1, so that the fields exhibit local plane
wave characteristics. Accordingly the field in the denser
nmedium 1 can be approximated by an incoming and an
outgoing plane wave. The wave number k; is defined by
(9) and the radius of curvature in the piane of incidence p
by (15). As we show below, the effect of curvature is
accounted for only wn the fields of medium 2 and not by the
boundary conditions.

For a plane interface, the magnitudes k; and k. of the
wave vectors k; and ke in medium 1 and 2 are related as

k2 = k2 + ky? 4 k.2 = (2mny/\)2 (19a)
ko2 = k2 by k2 = (27ny/)N)2 (19b)
where
ky = ki cos 8, ky = kicos a, ko = kicos 6, (20a)
ko = (ko? — k2t ky®)V? = ky(sin® a, — sin? a;) 12
(20b)
cos? 8, + cos? oy -+ cos? g, = 1. (20c¢)

Angles 9, and 6, are the inclinations to the x and 2 axes,
respectively, and «, is the inclination to.the y axis or
normal. The cartesian components ¢ (x,y,2) of the vector
fields satisfy the scalar wave equation for a homogeneous
media. Thus, in medium 2, a solution is

¥ = e(y) exp (thor + tk.2) (21a)

where
(@/dy®y + k) e(y) = 0.

So far we have only been considering the plane interface.
An exact solution of the fields for the curved interface
must have wvariations of the forms exp (il.¢.) ard
exp (il.¢.), where angles ¢, and ¢, are azimuthal angles
inthe r — yand y — z planes, referred to origins 0, and O,
at the centers of curvature (Fig. 5). To account for
curvature, we assume that k. and k. are functions of y
to satisfy

exp [ik.(y)a] = exp (1l ] exp [ik.(y)z] = exp [il.¢. ]
' (22)

(21b)

in the neighborhood of the interface. Since z == (p, + ¥) ¢»
and z =2 (p, -+ y) ., we have

ko(y) =L/ (o +y) k() =L/ (oo + ). (23)
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The azimuthal parameters [,,l, are defined by observing
that %,(0) =k, and k.(0) =k, on the interface. This
leads to

l. = pk:. 1= pik.. (24)
If we restrict the analysis to y << p,,p., then
k2(y) + k2(y) = (k2 + k) (1 — 2y/p)  (25)

where p is given by (15).

The electromagnetic fields in medium 2 are found by
replacing k.2 in (21b) by

kp’(y) = k2 — k2 (y) — k2 (y)

= ki? (sin? @, — sin? a; + 2y sin? a;/p).

(26a)

(26b)

After a ‘change of variables this leads to Airy’s equation
(a*/dg — £)e(t) =0 (27)

where £ is dimensionless

£(y) = —{2(k2 + k2)/p} P ky? + 2(k + k22)y/p}

(28a)

{2 sin? a;/kip}~23{sin? a; — sin? o, — 2y sin® ai/p}.
(28h)

The Airy function solutions of (27) can be thought of
best as connecting expressions between oscillatory and
evanescent (exponential) behavior. They give the field
dependence in the neighborhood of the caustic or turning
point of a large class of solutions to the scalar wave
equation, e.g., the Bessel functions in the region where
order equals argument.

The fields must be outward going waves as y — « and
also satisfy the boundary conditions at the dielectric
interface. The appropriate linear combination of Airy
functions required to represent outward going waves is
Ai (texp [2x4/3]). This function is discussed in the
Appendix.

The amplitude coefficients of the fields are found by
satisfying the boundary conditions at the dielectric inter-
face. In general, TE (E, = 0) and TM (H, = 0) type
waves couple at a nonplanar interface. However, our
perturbation method involves boundary conditions that
are the same as those for a plane interface. We have in-
cluded the effect of curvature in the scalar wave func-
tions e(£) found from (27). Further, subject to our ap-
proximations, kip 3> 1 and y < ps,pe, the e(£) depending on
one radius of curvature p only. Thus reflection from an
arbitrary surface defined by two principal radii of curva-
ture is equivalent to reflection from a cylindrical surface
of radius p, when the incident wave is in the cylinder
cross section, i.e., has no axial component. For this case
TM and TE modes do not couple and we can solve for the
amplitude coefficients with either E, = 0 or H, = 0.

We begin with E, = 0, so that E is parallel to the
interface. Then, in medium 1 (omitting the time depen-
dence exp [ —iwt]),
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E® = (aexp [kay]+ bexp [—ihuy])
cexp [i(k.r + k2) ] (29a)
k.1
H,® = ZL—ij—E (aexp [thay] — bexp [—ihay])
1
cexp [2(k,x + k.2)]  (29b)

where a and b are the amplitudes of the 2 components of
the incident and reflected electric fields. In medium 2 for
0 < y K pgp. we have

E.® = ¢ Al (§exp [2r1/3]) exp [i(kor + k.2) ] (30a)

—inge d

H,® . Jy—Ai (¢exp [271/3]) exp [i(kor 4+ k2) ],

(30b)

where ¢ is a constant. Continuity of ¥, and H,at y = 0
leads to

where

Y = —7 Al (Aexp [271/3]) /v AU’ (Aexp [271/3]) (32)

v = 12(k2 + k2) /p} P/ kn (33a)
= (2sIn? a,/kip)t3/cos a; (33b)

A=y =0). (34)

Prime denotes differentiation with respeet to A. The
power transmission coefficient defined by (3) is

TE =1—|b/al? (35a)
4Rey/(|¢[P+2Rey+1)  (35h)
where Re y is the real part of ¢ given as

Rey = (¢ +¢*)/2 = | Al (Aexp [27/3]) |72/4my.
(36)

il

The asterisk denotes the complex conjugate and we have
used the Wronskian (Al1l). The modulus of ¢ is simply
[y | = (1/v) | Al (Aexp 271/3) /AY (Aexp [27i/3]) |.

Generalized Fresnel’s Laws and Power Transmission
Coefficients

We can find an excellent approximation to T% by examin-
ing its limiting forms. When A >> 1, (35b), (36), (A3), and
(A4) lead to

TE = | TpF | exp (—4A%2/3).
When —A>> 1, (35b), (36), (A6), and (A7) lead to
TE = TpF = | TH¥ | (37b)

(37a)

where T#F is Fresnel’s classical power transmission coef-
ficient given by (4a) or equivalently as

TFE == 4/%1]%2/(]{'@,1 + ky2)2_ (38)
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We then note that the limiting forms (37) are equivalent
to the limiting forms of

T% = | Fp¥ | C (39)

where C is defined by (7) and A by (8) or (34) and (28).
This suggests that T given by (39) may be valid for all A.
The greatest departure of (39) from (35b) is at A = 0,
ie., at a; = a.. Then, from (4¢), (39), and (Al0), our
approximation (39) is .

Tarrx? = 3.182 (sin? a./kip) 3/ cos a. (40)

The more exact expression given by (35b) is
TE = Taprx®/{1 + (Tarrx®/2) + (Taprx®/2V3)?}.
(41)

Thus (39) is valid for all A when at a; = a,, Tapax? < 1.
Since, by an earlier assumption, kip 3> 1, Taprx” is small
unless a, 22 w/2. Therefore, from (40), we conclude that
kyp 3> cos™® «, is necessary for (39) to be valid.

In the next section we show that the resiriction kip >
cos™ a; 1s necessary to consider plane wave incidence so
that T given by (39) is no less accurate than TF given
by (35).

When H, = 0, the above procedure leads to T# =
| Te# | C, provided kip >>sin™ a. cos™ a,, where Ty is
given by (4b) or equivalently by

TeH = dn2nlpkys) {na?lyy + mhys) . (42)

The constraint on kyp again arises from requiring the
equality of TH and Taprx¥ at a; = a,.. TH corresponding
to (35) is no less accurate for plane wave incidence than
TH = | T#¥ | C corresponding to (39), unless the condition

kip >>sin~* o, 1s not satisfied. This condition s only o

restriction on very small angles a..

VII. ASSUMPTIONS IN THE ANALYSIS

A. kyp > sin a, cos? a;

We initially assumed that ki >> 1 to ensure that the
fields are locally plane, but how large must %y be relative
to «;? This can be determined when it is recalled that we
reduced the problem to a wave incident, with no axial
component, at a cylindrical boundary. The exact solution
for this problem has fields of the form J (ki) exp (il¢) at
the interface in the denser region, where J; is a Bessel
function of the first kind of order 1 and ¢ is the azimuthal
angle. Only when the Debye condition

kp>1 and ki — 1> 08 (43)

holds can Ji(kip) exp (il¢p) be decomposed into an in-
coming and an outgoing local plane wave at each point
(p,¢) on the interface [7]. Combining these restrictions

with the relation [7], I = ki sin «;, we deduce
1 — sin ;> {sin a;/ (kip) 2} V3 (44)

which is always satisfied when k;p >> 1 unless «; is close
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to #/2, for which case we find (44) compatible with
k1p > (cos a;)~%. This is consistent with the approxima-
tion used to obtain (39) from (35). Thus (39) is the
appropriate generalized Fresnel's power transmission coef-
Jficient for TE.

Since the expression for 7T required kip > sin™ a,-
cos—8 a,, the Debye condition alone is not sufficient for its
validity and our simple expression T# = | Tp7|C is
inaccurate for angles a, too small to satisfy kip >> sin™ a.
Fortunately, this is a case of little practical interest.

B. Yir K payP2

W assumed that y << p.,p, in the derivation of Airy’s
differential equation (27) so that the scalar wave functions
depended on p only. From studying the fields in medium 2
we see that there is a caustic or turning point at a position
¥ = Y > 0determined from £(y,,) = Oin (28a),i.e.,

Yoo = —oky?/2(k? + k) = (p/2) {1 — sin® a./sin® &}

(45)

for a; > a., and ¥y, = 0 for a; < . The fields are evanes-
cent for 0 < y < ¥y, and oscillatory for y > yi,. In order
to satisfy the outgoing wave condition our wave functions
must be valid for y > ¥4, although not necessarily for
y > Y. However, we are restricted to y << py,p.. Assuming
that p, < p,, we must therefore have y,, < p,. (This is
satisfied automatically when a; < «, since y,, = 0). Hence
we require from (45), (o/2p.){1 — sin® a,/sin? o;} K 1
which is satisfied when sin a, =2 sin «; unless (p/p,) is
enormous. Thus when sina;sina, in (45), yp is
given by (5).

The reader familiar with asymptotic methods for the
solution of differential equations may question the need
for the assumption y << p,,p., or equivalently sin e, =
sin «,. Instead, the Wentzel-Kramer—Brillouin (WKB)
method of solution could have been used directly, although
the resulting integral in the exponential function can in
general only be evaluated when sin &, = sin «,. One case
where it can be evaluated exactly is for the cylindrical
interface. However, we find that such solutions are valid
only when sin o; 22 sin a,. In other words, the restriction
sin a; & sin ., necessary when a; > a,, is due to a funda-
mental limitation of the perturbation method presented
here.

In the analysis we treated TE and TM waves separately.
In general, TM and TE waves couple. The situation is
then analogous to reflection from an anisotropic slab with
effective refractive indices n.,n. along the principal axes.
The effect of the anisotropic behavior can be seen in our
present example by determining the direction k. of the
transmitted wave at y = y.. From (26a), ky2(y,) = 0so
that the wave is tangent to the caustic. However, unless
Yip K pa,ps, We observe that the direction of ks, given by
(23), is not in the incident plane, i.e., the wave direction
has been twisted in the tunneling process [14]. Thus,
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when y, << p;,p., We are justified in separating the TM
and TE waves.

In conelusion, the concept of a generalized Fresnel’s law,
that depends only on the radius of curvature in the plane
of incidence, fails unless sin o, < sin «,, when a; > a..

APPENDIX
ATRY FUNCTIONS [4]

The linearly independent solutions of (27) are Ai(¢)
and Bi(¢), and the appropriate linear combinations for
our analysis are
Al (fexp [£27i/3])

= (exp [in/3]/2) (AL (§) F iBi(8)]
where Ai (£exp [—2#7/3]) is the complex conjugate of

Al (g exp [271/37]).
1) £>>1 (applicable when a, > a.)

Al (gexp [271/3]) = exp [—ir/6] exp [(2/3) 73]/ 2x €1

(AD)

(A2)
| Ai’ (£exp [274/3]) /Al (£ exp [2mi/3]) | == &2 (A3)
| Al (£exp [20/3]) [P =2 4w exp [— (4/3)87].  (Ad)
2) —&>> 1 (applicable when «; < a;)
Ai (—¢exp [2m1/3])
& exp [in/12] exp [1(2/3) 8I2]/ 2012808 (A5)

| A" (—¢exp [271/3])/Ai (—Eexp [2m/3]) | =2 g2
‘ (A6)

| Al (—fexp [2me/3]) |72 = 4orgl2, (A7)
3) &£ = 0 (applicable when o, = a,)
Ai (0-exp [244/3]) = 323/T(%) = 0.3550 (AS8)
| A’ (0-exp [27i/37])/Ai (0-exp [2¢/3]) |
A = 3121(2)/T(3) = 0.7290 (A9)
| Ai (0-exp [22/3]) |72 = 34T (3)? = 7.9337. (A10)

141

4) Wronskian
Al ((exp [2ni/3]) AV (texp [—2#1/3])
— A ((oxp [27i/3]) Al ($exp [—2#i/3T) = i/2x.
(A11)

Prime denotes differentiation with respect to £ in (A3),
(A6), (A9), and (Al1).
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